

8820-B High Temperature Rigid Urethane MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 25/10/2021 Revision Date: 26/10/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name 8820-B				
Synonyms	SDS Code: 8820-B; 8820-375ML, 8820-2.55L, 8820-10.8L, 8820-60L UFI:FCN0-U077-U00D-51JQ			
Other means of identification	High Temperature Rigid Urethane			

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Urethane hardener for use with resins		
Uses advised against	FOR INDUSTRIAL USE ONLY		

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada	
Telephone	+(44) 1663 362888	+(1) 800-201-8822	
Fax	Not Available	+(1) 800-708-9888	
Website	Not Available	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)		
Emergency telephone numbers	+(44) 20 35147487		
Other emergency telephone numbers	+(0) 800 680 0425		

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to
GB-CLP Regulation, UK SI
2019/720 and UK SI 2020/1567
[1]

H334 - Sensitisation (Respiratory) Category 1, H373 - Specific Target Organ Toxicity - Repeated Exposure Category 2, H332 - Acute Toxicity (Inhalation) Category 4, H335 - Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, H315 - Skin Corrosion/Irritation Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2, H317 - Sensitisation (Skin) Category 1

Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)

Signal word

Dange

Hazard statement(s)

H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.				
H373	y cause damage to organs through prolonged or repeated exposure.				
H332	Harmful if inhaled.				
H335	May cause respiratory irritation.				
H315	Causes skin irritation.				
H319	Causes serious eye irritation.				
H317	May cause an allergic skin reaction.				

Supplementary statement(s)

EUH204	contains isocyanates. May produce an allergic reaction.					
Precautionary statement(s) Prevention						
P260	Do not breathe mist/vapours/spray.					
P271	Use only outdoors or in a well-ventilated area.					
P280	P280 Wear protective gloves, protective clothing, eye protection and face protection.					
P284	[In case of inadequate ventilation] wear respiratory protection.					
P264	Wash all exposed external body areas thoroughly after handling.					
P272	Contaminated work clothing should not be allowed out of the workplace.					

Precautionary statement(s) Response

P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					
P342+P311	experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.					
P302+P352	ON SKIN: Wash with plenty of water and soap.					
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.					
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.					
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.					
P337+P313	If eye irritation persists: Get medical advice/attention.					
P362+P364	Take off contaminated clothing and wash it before reuse.					

Precautionary statement(s) Storage

P405	Store locked up.		
P403+P233	Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Skin contact may produce health damage*.

Ingestion may produce serious health damage*.

Cumulative effects may result following exposure*.

polymeric diphenylmethane diisocyanate	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
4,4'-diphenylmethane diisocyanate (MDI)	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
2,4'-diphenylmethane diisocyanate	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
2,2'-diphenylmethane diisocyanate	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
1.9016-87-9 2.Not Available 3.Not Available 4.Not Available	58	polymeric diphenylmethane diisocyanate	Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Sensitisation (Respiratory) Category 1, Carcinogenicity Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2; H332, H315, H319, H317, H334, H351, H335, H373, EUH204 [1]	Not Available
1.101-68-8 2.202-966-0 3.615-005-00-9 4.Not Available	38	4.4'-diphenylmethane diisocyanate (MDI)	Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Sensitisation (Respiratory) Category 1, Carcinogenicity Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2; H332, H315, H319, H317, H334, H351, H335, H373 [2]	Not Available
1.5873-54-1 2.227-534-9 3.615-005-00-9 4.Not Available	4	2.4'-diphenylmethane diisocyanate	Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Sensitisation (Respiratory) Category 1, Carcinogenicity Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation)	Not Available

1.CAS No 2.EC No 3.Index No 4.REACH No		%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Nanoform Particle Characteristics
				Category 3 , Specific Target Organ Toxicity - Repeated Exposure Category 2; H332, H315, H319, H317, H334, H351, H335, H373 [2]	
1.2536-05-2 2.219-799-4 3.615-005-00-9 4.Not Available		0.2	Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 2 2'-diphenylmethane 1. Sensitisation (Respiratory) Category 1. Carcinogenicity Category 2.		Not Available
L	egend:	1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			

SECTION 4 First aid measures

4.1. Description of first aid measures

•	
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- F Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- ▶ Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- ▶ Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- ► There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Water spray or fog - Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

Fire Fighting

- ► Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

- Combustible.

- Moderate fire hazard when exposed to heat or flame
- When heated to high temperatures decomposes rapidly generating vapour which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapour.
- Burns with acrid black smoke and poisonous fumes.
- Due to reaction with water producing CO2-gas, a hazardous build-up of pressure could result if contaminated containers are re-sealed.
- Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide. Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2)

isocyanates

hydrogen cyanide

and minor amounts of

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

May emit corrosive fumes.

When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

- ► Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Chemical Class: cyanates and isocyanates

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE RAN	K APPLICATION	COLLECTION	LIMITATIONS
---------------------	---------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R,W,SS
wood fiber - particulate	1	throw	pitchfork	R, P, DGC, RT
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC

Major Spills

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
cross-linked polymer - pillow	1	throw	skiploader	R,DGC, RT
polypropylene - particulate	2	blower	skiploader	R, SS, DGC
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC
wood fiber - particulate	3	blower	skiploader	R, W, P, DGC
polypropylene - mat	3	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R: Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- ► Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. Completely cover decontaminant with vermiculite or other similar absorbent. After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- ▶ Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ('neutralising fluid'). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v).

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100% Formulation B liquid surfactant 0.2-2% concentrated ammonia 3-8% 100% Formulation C ethanol, isopropanol or butanol 50% 5% concentrated ammonia 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ▶ DO NOT reseal container if contamination is suspected
- Open all containers with care.
- DO NOT touch the spill material

Moderate hazard.

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

7.1. Precautions for safe handling

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ► Keep containers securely sealed when not in use.
- Avoid physical damage to containers.Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

See section 5

Consider storage under inert gas.

for commercial quantities of isocyanates:

- · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)..
- · Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.

Other information

- Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection.
- Store in original containers.
- ► Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container

- ► Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.
- · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid.
 Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- · Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
 - Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
 - Do NOT reseal container if contamination is expected
 - · Open all containers with care
- Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence.
- Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
 - ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
 - The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

Storage incompatibility

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
4,4'-diphenylmethane diisocyanate (MDI)	Inhalation 0.05 mg/m³ (Local, Chronic) Inhalation 0.1 mg/m³ (Local, Acute) Inhalation 0.025 mg/m³ (Local, Chronic) * Inhalation 0.05 mg/m³ (Local, Acute) *	1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine)) 1 mg/kg soil dw (Soil) 1 mg/L (STP)
2,4'-diphenylmethane diisocyanate	Inhalation 0.05 mg/m³ (Local, Chronic) Inhalation 0.1 mg/m³ (Local, Acute) Inhalation 0.025 mg/m³ (Local, Chronic) * Inhalation 0.05 mg/m³ (Local, Acute) *	1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine)) 1 mg/kg soil dw (Soil) 1 mg/L (STP)
2,2'-diphenylmethane diisocyanate	Inhalation 0.05 mg/m³ (Local, Chronic) Inhalation 0.1 mg/m³ (Local, Acute) Inhalation 0.025 mg/m³ (Local, Chronic) * Inhalation 0.05 mg/m³ (Local, Acute) *	1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine)) 1 mg/kg soil dw (Soil) 1 mg/L (STP)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Europe ECHA Occupational exposure limits - Activity list	polymeric diphenylmethane diisocyanate	Not Available	Not Available	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	polymeric diphenylmethane diisocyanate	Isocyanates, all (as -NCO) Except methyl isocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Sen
Europe ECHA Occupational exposure limits - Activity list	4,4'-diphenylmethane diisocyanate (MDI)	Not Available	Not Available	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	4,4'-diphenylmethane diisocyanate (MDI)	Isocyanates, all (as -NCO) Except methyl isocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Sen
Europe ECHA Occupational exposure limits - Activity list	2,4'-diphenylmethane diisocyanate	Not Available	Not Available	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	2,4'-diphenylmethane diisocyanate	Isocyanates, all (as -NCO) Except methyl isocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Sen
Europe ECHA Occupational exposure limits - Activity list	2,2'-diphenylmethane diisocyanate	Not Available	Not Available	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	2,2'-diphenylmethane diisocyanate	Isocyanates, all (as -NCO) Except methyl isocyanate	0.02 mg/m3	0.07 mg/m3	Not Available	Sen

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
polymeric diphenylmethane diisocyanate	0.15 mg/m3	3.6 mg/m3	22 mg/m3
4,4'-diphenylmethane diisocyanate (MDI)	0.45 mg/m3	Not Available	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	29 mg/m3	40 mg/m3	240 mg/m3

Ingredient	Original IDLH	Revised IDLH
polymeric diphenylmethane diisocyanate	Not Available	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	75 mg/m3	Not Available
2,4'-diphenylmethane diisocyanate	Not Available	Not Available
2,2'-diphenylmethane diisocyanate	Not Available	Not Available

MATERIAL DATA

for isocyanates:

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. This should emphasise:

- b demography, occupational and medical history and health advice
- ▶ completion of a standardised respiratory questionnaire
- physical examination of the respiratory system and skin
- ▶ standardised respiratory function tests such as FEV1, FVC and FEV1/FVC

Various portable or stationary instruments are available for the continuous measurement of isocyanates in the air. All of them function on the principle of colourimetric evaluation of an indicator paper strip. They are operating continuously and unattended. Paper tape systems are easy to use and do not require skilled analysts to operate them. They give rapid results

and are therefore suitable for leak detection and in emergency situations. However,:

- they may read incorrect at very high or very low humidity,
- are unsuitable for aerosols
- and may not be accepted for purposes of regulatory compliance.

Air monitoring of isocyanates requires sound analytical knowledge. In order to obtain reliable results only laboratories with experience in that specific area should be engaged with such measurements

In the evaluation of the German MAK Commission the justification of the OEL for 4,4'- MDI/ pMDI is established based on the isocyanate (NCO) group which is common to the monomeric, oligomeric and the polymeric MDIs. This NCO group is highly reactive (see toxicokinetics and category justification for details). Due to this high reactivity of the functional NCO group towards nucleophilic biomolecules the primary health effect of MDI is irritation at the point of contact, which can be demonstrated by the numerous acute, subacute and chronic bioassays, and sensitization.

The most sensitive health effect resulting from acute inhalation exposure to respirable aerosols of MDI is irritation to predominately the bronchio-alveolar part of the respiratory tract. After inhalation exposure, MDI reacts with nucleophilic low and higher-molecular components of the liquid films that cover the airways, glutathione (GSH) represents the most important nucleophile in quantitative terms. The low-molecular adducts or conjugates of MDI are absorbed and direct transcarbamovlation results in plasma protein adducts (albumin. haemoglobin). All observed health effects resulting from exposure to respirable aerosols in acute, subchronic or chronic bioassays and human studies can be allocated to primary alveolar reactivity (respiratory irritation and/or sensitization). No systemic effect other than secondary to primary irritation has been described.

Biomonitoring for exposure to diisocyanates typically looks to assay derivatives (diamines) following hydrolysis of biological fluids and is routinely employed to measure occupational exposure to MDI and other dijsocyanates. For diamine analysis, samples of urine are typically used, although blood samples can also be used. However, these markers are not specific for the diisocyanate exposure. The urine biomarkers (after acid or base hydrolysis) reflected recent exposures whereas certain haemoglobin (Hb) biomarkers did not necessarily correlate with the urine biomarkers, and were considered to reflect overall exposures over a longer term. The hydrolysis methods and conditions used release differing amounts of the diamine analyte.

Hydrolysis analytes are at low concentrations and proportionally little of the dose is in urine or blood, and that there is no standardised method for measuring biomarkers in hydrolyzed urine. Investigation of diisocyanate specific biomarkers has focused on the conjugated molecules in blood. Typically, conjugates with Hb or albumin (Alb) have been assessed, and there has been progress in application of experiments in animals to biomonitoring of human exposures to MDI.

The role for glutathione as an intermediary in transport of diisocyanates is now supported by good evidence using various model compounds. The most probable reactions of isocyanates with biological macromolecules are with the amine (mixed urea), the hydroxyl (carbamate) and the sulphydryl (thiolytic acid ester) and that latter is of a reversible nature. The thiocarbamate bond of isocyanate-sulphydryl is reversible, and various authors have found release and transfer of MDI moieties from thiocarbamate conjugates to other nucleophiles, notably protein. The conjugates were shown to be recognised by serum IgG from MDI exposed workers, demonstrating a non-enzymatic, thiol-mediated transcarbamolyating mechanism to protein.

The methods to identify and quantify MDI-adducts to plasma proteins particularly albumin (Alb) and to haemoglobin (Hb) have now been applied to biological monitoring, particularly useful since the amount of adducts would be indicative of an integrated exposure. In addition these adducts are specific for MDI exposure. However the total amount of the analyte MDA, retrievable from Hb-adducts and urinary precursors, accounts for less than 0.5 % of the applied dose of MDI, and the lack of linearity of biomarker to exposure dose makes uncertain the extrapolation from the yield of biomarkers in urine or blood towards inhalative MDI exposure. The use of protein adducts for biomonitoring appears to overcome some of these difficulties and benefits from specificity of the analyte. To date no diisocyanate specific urinary biomarker has been identified. For blood, the MDI-specific methods developed are: Hb-conjugate derived hydantoin, Alb-lysine conjugates and peptide conjugates. On the basis of limits of detection, the Hb-hydantoin method is most sensitive compared to the Alb-lysine method which in turn is more sensitive than the signature peptide method. The Hb-hydantoin method covers a longer period of exposure than the Alb-lysine, due to the longer half life of the erythrocyte compared to serum albumin.

for diphenylmethane diisocyanate (methylene bisphenyl isocyanate; MDI)

Odour Threshold Value: 0.39 ppm

IDLH Level: 10 mg/m3

Mean MDI exposures of less than 0.003 ppm appear to have no acute or chronic effect on pulmonary function.

MDI produces identical toxicological responses to those produced by TDI and the recommended TLV-TWA is identical for the two isocyanates. Exposure at or below the recommended value is thought to protect the worker against pulmonary function decrements as well as to minimise the potential for respiratory tract sensitisation. Individuals who may be hypersusceptible or otherwise unusually responsive to exposure to certain industrial chemicals may not adequately protected from adverse health effects caused by MDI at the recommended TLV-TWA. Ceiling values recommended by NIOSH and OSHA are synonymous with normal excursions allowable for exposures to the TLV-TWA (in excess of 3 x TLV-TWA for no more than a total of 30 minutes during a work day but in any case not exceeding 5 x TLV-TWA).

8.2. Exposure controls

8.2.1. Appropriate engineering

- All processes in which isocyanates are used should be enclosed wherever possible.
- For Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3-2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation. The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases

with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

Safety glasses with side shields.

- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
 - Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Do NOT wear natural rubber (latex gloves).
- ▶ Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- ▶ Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- ▶ DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Avoid contact with moisture.

Body protection

Hands/feet protection

See Other protection below

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential

Other protection

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- P.V.C apron.
- ▶ Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the $\it computer-generated$ selection:

8820-B High Temperature Rigid Urethane

Material	СРІ
PE/EVAL/PE	A

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Full face respirator with supplied air.

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocvanate.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Brown		
Physical state	Liquid	Relative density (Water = 1)	1.24
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	174.19
Initial boiling point and boiling range (°C)	208	Molecular weight (g/mol)	Not Available
Flash point (°C)	198	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	<0.001	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of elevated temperatures.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

SECTION 11 Toxicological I	ntormation
11.1. Information on toxicolog	ical effects
Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures. Inhalation hazard is increased at higher temperatures. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severely toxic effects. Relatively small amounts absorbed from the lungs may prove fatal. Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and ter
Ingestion	The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching.

Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of

nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Polyisocyanates still contain small amounts of monomeric isocyanate (typically <0.5 parts per weight) and both – the polyisocyanate and the monomer - have toxicological importance. In addition, solvents also contribute to the overall toxicity of these products.

Due to the higher molecular weight and the much lower vapor pressure the polyisocyanates exhibit a significantly reduced health hazard as compared to the corresponding monomers. Nevertheless they should only be handled under controlled conditions. They are not or only slightly irritating to the skin and eyes, but might be irritating to the respiratory tract (nose, throat, lung). Polyisocyanates might act as skin sensitisers On that basis there is clear evidence from sensitive animal models that aliphatic polyisocyanates and prepolymers (HDI-based as well as IPDI-based, for example) may cause skin sensitisation. it is decided to classify all HDI-based and IPDI-based polyisocyanates and prepolymers as skin sensitisers. From animal models, however, there is no evidence that polyisocyanates are sensitising to the respiratory tract. Results from animal tests with repeated aerosol exposures indicate that under these conditions the respiratory tract is the primary target of aliphatic polyisocyanates, other organs are not significantly affected.

Available information does not provide evidence that polyisocyanates might either be mutagenic, carcinogenic or toxic to reproduction. Polymers based on isocyanate monomers (polyurethanes) are generally of low concern. However, in the majority of cases it is not possible to conclude from the chemical name of the polymer whether an individual polyurethane is, or is not, of low concern.

Finished polyurethane polymers used in the majority of household applications contain no unreacted isocyanate groups. The production of these polymers involves the use of an excess of the hydroxyl group-containing monomer or monomers leading to complete reaction of all of the isocyanate groups.

For certain applications, however, similar polymer chemistry can be used with the isocyanate group-containing monomer in excess. This results in the formation of a polyurethane 'pre-polymer', which is intended to be further reacted in its end use. Where the pre-polymer is identified as being 'blocked', it indicates that there are no free isocyanate groups.

The polymer contained in this product has a reactive group generally considered to be of high concern (US EPA). There are health concerns for isocyanates on the basis of their skin and respiratory sensitisation properties and other lung effects e.g TDI and MDI). Aromatic isocyanates may be potentially carcinogenic (e.g. TDI and DADI). Frequently new chemical isocyanates are manufactured with a significant excess of isocyanate monomer. Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a 'highly' dispersed polymer population suggest that a polymer of approximate molecular weight 5000 could contain no more than one reactive group of high concern for it to be regulated as a polymer of low concern (a so-called PLC) Polymers with a molecular weight above 10000 are generally considered to be PLCs because these are not expected to be absorbed by biological systems. The choice of 10000 as a cut-off value is thought to provide a safety factor of 100, regarded as reasonable in light of limited data, duration of studies, dose levels at which effects are seen, and extrapolation from animals to humans.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw).

The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

A 90-day inhalation study in rats with polymeric MDI (6 hours/day, 5 days/week) produced moderate to severe hyperplastic inflammatory lesions in the nasal cavities and lungs at levels of 8 mg/m3 or greater.

Rats exposed for two years to a respirable aerosol of polymeric MDI exhibited chronic pulmonary irritation at high concentrations. Only at the highest level (6 mg/m3), was there a significant incidence of a benign tumour of the lung (adenoma) and one malignant tumour (adenocarcinoma). There were no lung tumours at 1 mg/m3 and no effects at 0.2 mg/m3. Overall, the tumour incidence, both benign and malignant and the number of animals with the tumours were not different from controls. The increased incidence of lung tumours is associated with prolonged respiratory irritation and the concurrent accumulation of yellow material in the lung, which occurred throughout the study. In the absence of prolonged exposure to high concentrations leading to chronic irritation and lung damage, it is highly unlikely that tumour formation will occur.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Respiratory sensitisation may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

8820-B High Temperature Rigid Urethane

TOXICITY	IRRITATION
Not Available	Not Available

polymeric diphenylmethane diisocyanate

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >9400 mg/kg ^[2]	Eye (rabbit): 100 mg - mild
Inhalation(Rat) LC50; 0.49 mg/L4h ^[2]	
Oral(Rat) LD50; 43000 mg/kg ^[2]	

4,4'-diphenylmethane diisocyanate (MDI)

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >6200 mg/kg ^[2]	Dermal Sensitiser *
Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
Oral(Rat) LD50; >2000 mg/kg ^[1]	Skin (rabbit): 500 mg /24 hours
	Skin: adverse effect observed (irritating) ^[1]

2,4'-diphenylmethane diisocyanate

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >9400 mg/kg ^[1]	Not Available
Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]	
Oral(Rat) LD50; >2000 mg/kg ^[1]	

2,2'-diphenylmethane diisocyanate

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >9400 mg/kg ^[1]	Not Available
Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]	
Oral(Rat) LD50; >2000 mg/kg ^[1]	

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

POLYMERIC DIPHENYLMETHANE DIISOCYANATE

product

4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)

Inhalation (human) TCLo: 0.13 ppm/30 mins Eye (rabbit): 0.10 mg moderate

8820-B High Temperature
Rigid Urethane & POLYMERIC
DIPHENYLMETHANE
DIISOCYANATE &
4,4'-DIPHENYLMETHANE
DIISOCYANATE (MDI) &
2,4'-DIPHENYLMETHANE
DIISOCYANATE &
2,2'-DIPHENYLMETHANE
DIISOCYANATE &

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

POLYMERIC DIPHENYLMETHANE DIISOCYANATE & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)

POLYMERIC

DIPHENYLMETHANE

4.4'-DIPHENYLMETHANE

DIISOCYANATE (MDI) &

2,4'-DIPHENYLMETHANE

2,2'-DIPHENYLMETHANE

DIISOCYANATE &

DIISOCYANATE &

DIISOCYANATE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing

for diisocyanates

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocyanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic diisocyanates tested positive and the one aliphatic diisocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic diisocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route

Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two year repeated dose study in rats by the inhalation route.

Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic diisocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic diisocyanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone diisocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-4,4'-diisocyanate (IHMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocyanates.

Dermal Irritation: Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical, hydrogenated MDI (1,1-methylenebis-4-isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs.

2,4'-DIPHENYLMETHANE DIISOCYANATE & 2,2'-DIPHENYLMETHANE DIISOCYANATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	→	Carcinogenicity	×
Skin Irritation/Corrosion	→	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

🎺 – Data available to make classification

11.2.1. Endocrine Disruption Properties

Not Available

SECTION 12 Ecological information

12.1. Toxicity

8820-B High Temperature	Endpoint Test Duration (hr)		Species	Value	Source	
Rigid Urethane	Not Available	Not Available	Not Available	Not Available	Not Availabl	е
lymeric diphenylmethane	Endpoint	Test Duration (hr)	Species	Value	Source	
diisocyanate	Not Available	Not Available	Not Available	Not Available	Not Availabl	е
	Endpoint	Test Duration (hr)	Species	Val	ue S	Source
	EC50	72h	Algae or other aquatic pla	nts >16	640mg/l 2	
4,4'-diphenylmethane	LC50	96h	Fish		000mg/l 2	
diisocyanate (MDI)	NOEC(ECx)	504h	Crustacea		10mg/l 2	
	BCF	672h Fish		61-	150 7	
				<u>'</u>	<u>'</u>	
	Endpoint	Test Duration (hr)	Species	Val	ue S	Source
2,4'-diphenylmethane	NOEC(ECx)	504h	Crustacea	>=1	10mg/l 2	!
diisocyanate	EC50	72h	Algae or other aquatic pla	nts >16	640mg/l 2	!
	LC50	96h	Fish	>10	000mg/l 2	:
	Endpoint	Test Duration (hr)	Species	Val	IIA S	Source
2,2'-diphenylmethane	EC50	72h	Algae or other aquatic pla		640mg/l 2	
diisocyanate	LC50	96h	Fish		000mg/l 2	
	NOEC(ECx)	504h	Crustacea	>=1	10mg/l 2	!
Legend:	V3.12 (QSAR) - Aq	uatic Toxicity Data (Estimated) 4	CHA Registered Substances - Ec 1. US EPA, Ecotox database - Aqu ETI (Japan) - Bioconcentration Da	atic Toxicity Data 5. ECETC		

for polyisocyanates:

Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms.

Hydrolysis would represents the primary fate mechanism for the majority of the commercial isocyanate monomers, but, is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Hydrolysis products are predominantly insoluble stable polyureas. Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the ambient environment and in wastewater treatment in the absence of significant hydrolysis. Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis.

Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates.

Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. Most of the substances take several months to degrade.

Degradation of the hydrolysis products will occur at varying rates depending on the moiety formed. DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
4,4'-diphenylmethane diisocyanate (MDI)	LOW (Half-life = 1 days)	LOW (Half-life = 0.24 days)
2,4'-diphenylmethane diisocyanate	HIGH	HIGH
2,2'-diphenylmethane diisocyanate	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
4,4'-diphenylmethane diisocyanate (MDI)	LOW (BCF = 15)
2,4'-diphenylmethane diisocyanate	HIGH (LogKOW = 5.4481)
2,2'-diphenylmethane diisocyanate	HIGH (LogKOW = 5.4481)

12.4. Mobility in soil

Ingredient	Mobility
4,4'-diphenylmethane diisocyanate (MDI)	LOW (KOC = 376200)

Ingredient	Mobility
2,4'-diphenylmethane diisocyanate	LOW (KOC = 384000)
2,2'-diphenylmethane diisocyanate	LOW (KOC = 392000)

12.5. Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Available	Not Available	Not Available
PBT	X	×	×
vPvB	×	×	×
PBT Criteria fulfilled?			
vPvB		No	

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ► Reuse
- Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- DO NOT recycle spilled material.
- Consult State Land Waste Management Authority for disposal.
- Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- ▶ DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- Puncture containers to prevent re-use.
- ▶ Bury or incinerate residues at an approved site.

Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 Transport information

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Class Not Applicable Subrisk Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Hazard identification (Kemler) Classification code Not Applicable Hazard Label Not Applicable Special provisions Not Applicable		

Limited quantity	Not Applicable
Tunnel Restriction Code	Not Applicable

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable			
14.2. UN proper shipping name	Not Applicable			
	ICAO/IATA Class	Not Applicable		
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
,	ERG Code	Not Applicable		
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
	Special provisions Not Applicable			
	Cargo Only Packing Instructions		Not Applicable	
	Cargo Only Maximum Qty / Pack		Not Applicable	
14.6. Special precautions for user	Passenger and Cargo	Packing Instructions	Not Applicable	
usei	Passenger and Cargo Maximum Qty / Pack		Not Applicable	
	Passenger and Cargo Limited Quantity Packing Instructions		Not Applicable	
	Passenger and Cargo	Limited Maximum Qty / Pack	Not Applicable	

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable			
14.2. UN proper shipping name	Not Applicable	Not Applicable		
14.3. Transport hazard class(es)		ot Applicable ot Applicable		
14.4. Packing group	Not Applicable	Not Applicable		
14.5. Environmental hazard	Not Applicable			
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	Not Applicable Not Applicable Not Applicable		

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Not Applicable Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Classification code Not Applicable Special provisions Not Applicable Limited quantity Not Applicable Equipment required Not Applicable Fire cones number Not Applicable		

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
polymeric diphenylmethane diisocyanate	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	Not Available
2,4'-diphenylmethane diisocyanate	Not Available
2,2'-diphenylmethane diisocyanate	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
polymeric diphenylmethane diisocyanate	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	Not Available
2,4'-diphenylmethane diisocyanate	Not Available
2,2'-diphenylmethane diisocyanate	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

polymeric diphenylmethane diisocyanate is found on the following regulatory lists

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

4,4'-diphenylmethane diisocyanate (MDI) is found on the following regulatory lists

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

2,4'-diphenylmethane diisocyanate is found on the following regulatory lists

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

2,2'-diphenylmethane diisocyanate is found on the following regulatory lists

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) $\,$

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union - European Inventory of Existing Commercial Chemical Substances (FINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (polymeric diphenylmethane diisocyanate; 4,4'-diphenylmethane diisocyanate (MDI); 2,4'-diphenylmethane diisocyanate; 2,2'-diphenylmethane diisocyanate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (polymeric diphenylmethane diisocyanate)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (2,4'-diphenylmethane diisocyanate; 2,2'-diphenylmethane diisocyanate)
Vietnam - NCI	Yes
Russia - FBEPH	No (2,2'-diphenylmethane diisocyanate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	25/10/2021
Initial Date	18/06/2018

Full text Risk and Hazard codes

Suspected of causing cancer

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason for Change

A-2.00 - Added UFI number and format change to SDS